Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development
Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development
We studied differential splicing of nebulin, a giant filamentous F-actin binding protein (M(r) approximately 700-800kDa) that is found in skeletal muscle. Nebulin spans the thin filament length, its C-terminus is anchored in the Z-disc, and its N-terminal region is located toward the thin filament pointed end. Various lines of evidence indicate that nebulin plays important roles in thin filament and Z-disc structure in skeletal muscle. In the present work we studied nebulin in a range of muscle types during postnatal development and performed transcript studies with a mouse nebulin exon microarray, developed by us, whose results were confirmed by RT-PCR. We also performed protein studies with high-resolution SDS-agarose gels and Western blots, and structural studies with electron microscopy. We found during postnatal development of the soleus muscle major changes in splicing in both the super-repeat region and the Z-disc region of nebulin; interestingly, these changes were absent in other muscle types. Three novel Z-disc exons, previously described in the mouse gene, were upregulated during postnatal development of soleus muscle and this was correlated with a significant increase in Z-disc width. These findings support the view that nebulin plays an important role in Z-disc width regulation. In summary, we discovered changes in both the super-repeat region and the Z-disc region of nebulin, that these changes are muscle-type specific, and that they correlate with differences in sarcomere structure.
- University of Arizona United States
- Amsterdam UMC Netherlands
- Amsterdam Cardiovascular Sciences Netherlands
- Amsterdam UMC, location VUmc Netherlands
- Medizinische Fakultät Mannheim Germany
Alternative Splicing, Mice, Microscopy, Electron, Reverse Transcriptase Polymerase Chain Reaction, Animals, Muscle Proteins, Exons, Microarray Analysis, Muscle, Skeletal
Alternative Splicing, Mice, Microscopy, Electron, Reverse Transcriptase Polymerase Chain Reaction, Animals, Muscle Proteins, Exons, Microarray Analysis, Muscle, Skeletal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
