Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synj1)
Combining data integration and molecular dynamics for target identification in α-Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synj1)
Parkinson's disease (PD), Alzheimer's disease (AD) and Amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases hallmarked by the formation of toxic protein aggregates. However, targeting these aggregates therapeutically have thus far shown no success. The treatment of AD has remained particularly problematic since no new drugs have been approved in the last 15 years. Therefore, novel therapeutic targets need to be identified and explored. Here, through the integration of genomic and proteomic data, a set of proteins with strong links to alpha-synuclein-aggregating neurodegenerative diseases was identified. We propose 17 protein targets that are likely implicated in neurodegeneration and could serve as potential targets. The human phosphatidylinositol 5-phosphatase synaptojanin-1, which has already been independently confirmed to be implicated in Parkinson's and Alzheimer's disease, was among those identified. Despite its involvement in PD and AD, structural aspects are currently missing at the molecular level. We present the first atomistic model of the 5-phosphatase domain of synaptojanin-1 and its binding to its substrate phosphatidylinositol 4,5-bisphosphate (PIP2). We determine structural information on the active site including membrane-embedded molecular dynamics simulations. Deficiency of charge within the active site of the protein is observed, which suggests that a second divalent cation is required to complete dephosphorylation of the substrate. The findings in this work shed light on the protein's binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and give additional insight for future targeting of the protein active site, which might be of interest in neurodegenerative diseases where synaptojanin-1 is overexpressed. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
Computational and Structural Biotechnology Journal, 18
ISSN:2001-0370
- Institute of Biochemistry Switzerland
- Randall Division of Cell and Molecular Biophysics United Kingdom
- King's College London United Kingdom
- ETH Zurich Switzerland
- Kings College London, University of London United Kingdom
α-Synuclein, a-Synuclein, 570, Parkinson's disease (PD), Neurodegenerative diseases, Molecular dynamics (MD), 540, Parkinson’s disease (PD), Synaptojanin-1, Data integration; Molecular dynamics (MD); Neurodegenerative diseases; Parkinson’s disease (PD); Synaptojanin-1; a-Synuclein, Data integration, TP248.13-248.65, Biotechnology, Research Article
α-Synuclein, a-Synuclein, 570, Parkinson's disease (PD), Neurodegenerative diseases, Molecular dynamics (MD), 540, Parkinson’s disease (PD), Synaptojanin-1, Data integration; Molecular dynamics (MD); Neurodegenerative diseases; Parkinson’s disease (PD); Synaptojanin-1; a-Synuclein, Data integration, TP248.13-248.65, Biotechnology, Research Article
6 Research products, page 1 of 1
- 2014IsRelatedTo
- 2016IsAmongTopNSimilarDocuments
- 2010IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
