Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cancer The...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cancer Therapeutics
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance

Authors: Yuexing, Zhang; Douglas, Linn; Zhenqiu, Liu; Jonathan, Melamed; Fabio, Tavora; Charles Y, Young; Angelika M, Burger; +1 Authors

EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance

Abstract

Abstract Aberrant activation of the androgen receptor (AR) by the ErbB2/ErbB3 heterodimer contributes to the development of hormone resistance in prostate cancer. EBP1, an ErbB3-binding protein, acts as an AR corepressor. As EBP1 is decreased in preclinical models of hormone-refractory prostate cancer, we studied the expression of EBP1 in human prostate cancer. We found that the expression of the EBP1 gene was significantly decreased in prostate cancer tissues compared with benign prostate at both mRNA and protein levels. Restoration of EBP1 expression in the hormone-refractory LNCaP C81 cell line led to an amelioration of the androgen-independent phenotype based on established biological criteria and a reduction in the expression of a cohort of AR target genes. The ability of the ErbB3 ligand heregulin (HRG) to stimulate growth and AKT phosphorylation of hormone-refractory prostate cancer cells was abolished. Abrogation of EBP1 expression by short hairpin RNA in hormone-dependent LNCaP cells, which undergo apoptosis in response to HRG, resulted in HRG-stimulated cell growth. Restoration of EBP1 expression decreased the tumorigenicity of C81 xenografts in female mice, whereas elimination of EBP1 expression enhanced the ability of LNCaP cells to grow in female mice. Our data support a role for EBP1 in the development of hormone-refractory prostate cancer via inhibition of both AR- and HRG-stimulated growth and present a novel strategy for treating androgen-refractory prostate cancer. [Mol Cancer Ther 2008;7(10):3176–86]

Keywords

Male, Receptor, ErbB-3, Neuregulin-1, Prostatic Neoplasms, RNA-Binding Proteins, Gene Expression Regulation, Neoplastic, Disease Models, Animal, Mice, Phosphatidylinositol 3-Kinases, Phenotype, Drug Resistance, Neoplasm, Cell Line, Tumor, Androgens, Disease Progression, Animals, Humans, RNA, Small Interfering, Proto-Oncogene Proteins c-akt, Adaptor Proteins, Signal Transducing, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze