Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biology of the Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biology of the Cell
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Metalloprotease‐mediated OPA1 processing is modulated by the mitochondrial membrane potential

Authors: Olwenn, Guillery; Florence, Malka; Thomas, Landes; Emmanuelle, Guillou; Craig, Blackstone; Anne, Lombès; Pascale, Belenguer; +2 Authors

Metalloprotease‐mediated OPA1 processing is modulated by the mitochondrial membrane potential

Abstract

Background information. Human OPA1 (optic atrophy type 1) is a dynamin‐related protein of the mitochondrial IMS (intermembrane space) involved in membrane fusion and remodelling. Similarly to its yeast orthologue Mgm1p that exists in two isoforms generated by the serine protease Pcp1p/Rbd1p, OPA1 exists in various isoforms generated by alternative splicing and processing. In the present paper, we focus on protease processing of OPA1.Results. We find that various mammalian cell types display a similar pattern of OPA1 isoforms [two L‐OPA1 (long isoforms of OPA1) and three S‐OPA1 (short isoforms of OPA1)] and that loss of the inner membrane potential, but not inhibition of oxidative phosphorylation or glycolysis, induces rapid and complete processing of L‐OPA1 to S‐OPA1. In isolated mitochondria, OPA1 processing was inhibited by heavy‐metal chelators, pointing to processing by a mitochondrial metalloprotease. The pattern of OPA1 isoforms and its processing kinetics were normal in mitochondria devoid of the serine protease PARL (presenilins‐associated rhomboid‐like protein) – the human orthologue of Pcp1/Rbd1 – and in cells from patients carrying homozygous mutations in SPG7 (spastic paraplegia type 7), a gene encoding the matrix‐oriented metalloprotease paraplegin. In contrast, OPA1 processing kinetics were delayed upon knock‐down of YME1L (human yme1‐like protein), an IMS‐oriented metalloprotease. OPA1 processing was also stimulated during apoptosis, but inhibition of this processing did not affect apoptotic release of OPA1 and cytochrome c. Finally, we show that all OPA1 isoforms interact with Mfn1 (mitofusin 1) and Mfn2 and that these interactions are not affected by dissipation of ΔΨm (inner mitochondrial membrane potential) or OPA1 processing.Conclusions. Metalloprotease‐mediated processing of OPA1 is modulated by the inner membrane potential and is likely to be mediated by the YME1L protease.

Keywords

Membrane Potential, Mitochondrial, Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Membrane Proteins, Membrane Transport Proteins, Metalloendopeptidases, Mitochondrial Membrane Transport Proteins, GTP Phosphohydrolases, Mitochondrial Proteins, Mitochondrial Membranes, Metalloproteases, ATPases Associated with Diverse Cellular Activities, Humans, Protein Isoforms, RNA Interference, Protein Processing, Post-Translational, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 1%
bronze