Proteomic identification of specifically carbonylated brain proteins in APPNLh/APPNLh×PS-1P264L/PS-1P264L human double mutant knock-in mice model of Alzheimer disease as a function of age
Proteomic identification of specifically carbonylated brain proteins in APPNLh/APPNLh×PS-1P264L/PS-1P264L human double mutant knock-in mice model of Alzheimer disease as a function of age
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed.
- Roma Tre University Italy
- Sapienza University of Rome Italy
- University of Louisville United States
- University of Kentucky United States
Brain Chemistry, Male, Proteomics, Proline, Age Factors, Brain, Mice, Transgenic, Nerve Tissue Proteins, Protein Structure, Tertiary, Protein Carbonylation, Amyloid beta-Protein Precursor, Disease Models, Animal, Mice, Amino Acid Substitution, Alzheimer Disease, Leucine, Presenilin-1, Animals, Humans, Gene Knock-In Techniques
Brain Chemistry, Male, Proteomics, Proline, Age Factors, Brain, Mice, Transgenic, Nerve Tissue Proteins, Protein Structure, Tertiary, Protein Carbonylation, Amyloid beta-Protein Precursor, Disease Models, Animal, Mice, Amino Acid Substitution, Alzheimer Disease, Leucine, Presenilin-1, Animals, Humans, Gene Knock-In Techniques
17 Research products, page 1 of 2
- 2019IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
