Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling
Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling
Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p–Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p–Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p–Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.
Binding Sites, Saccharomyces cerevisiae Proteins, Iron, Cell Membrane, Green Fluorescent Proteins, Ceruloplasmin, Golgi Apparatus, Membrane Transport Proteins, Endosomes, Saccharomyces cerevisiae, Protein Sorting Signals, Endocytosis, Protein Structure, Tertiary, Protein Transport, Carrier Proteins, Transport Vesicles, Research Articles
Binding Sites, Saccharomyces cerevisiae Proteins, Iron, Cell Membrane, Green Fluorescent Proteins, Ceruloplasmin, Golgi Apparatus, Membrane Transport Proteins, Endosomes, Saccharomyces cerevisiae, Protein Sorting Signals, Endocytosis, Protein Structure, Tertiary, Protein Transport, Carrier Proteins, Transport Vesicles, Research Articles
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).154 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
