Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival

Authors: Y, Wang; M, Mikhailova; S, Bose; C-X, Pan; R W, deVere White; P M, Ghosh;

Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival

Abstract

The mTOR (mammalian target of rapamycin) inhibitor rapamycin caused growth arrest in both androgen-dependent and androgen-independent prostate cancer cells; however, long-term treatment induced resistance to the drug. The aim of this study was to investigate methods that can overcome this resistance. Here, we show that rapamycin treatment stimulated androgen receptor (AR) transcriptional activity, whereas suppression of AR activity with the antiandrogen bicalutamide sensitized androgen-dependent, as well as AR-sensitive androgen-independent prostate cancer cells, to growth inhibition by rapamycin. Further, the combination of rapamycin and bicalutamide, but not the individual drugs, induced significant levels of apoptosis in prostate cancer cells. The net effect of rapamycin is determined by its individual effects on the mTOR complexes mTORC1 (mTOR/raptor/GbetaL) and mTORC2 (mTOR/rictor/sin1/GbetaL). Inhibition of both mTORC1 and mTORC2 by rapamycin-induced apoptosis, whereas rapamycin-stimulation of AR transcriptional activity resulted from the inhibition of mTORC1, but not mTORC2. The effect of rapamycin on AR transcriptional activity was mediated by the phosphorylation of the serine/threonine kinase Akt, which also partially mediated apoptosis induced by rapamycin and bicalutamide. These results indicate the presence of two parallel cell-survival pathways in prostate cancer cells: a strong Akt-independent, but rapamycin-sensitive pathway downstream of mTORC1, and an AR-dependent pathway downstream of mTORC2 and Akt, that is stimulated by mTORC1 inhibition. Thus, the combination of rapamycin and bicalutamide induce apoptosis in prostate cancer cells by simultaneously inhibiting both pathways and hence would be of therapeutic value in prostate cancer treatment.

Keywords

Male, Sirolimus, Cell Survival, TOR Serine-Threonine Kinases, Prostatic Neoplasms, Proteins, Apoptosis, Regulatory-Associated Protein of mTOR, Mechanistic Target of Rapamycin Complex 1, Gene Expression Regulation, Neoplastic, Rapamycin-Insensitive Companion of mTOR Protein, Receptors, Androgen, Cell Line, Tumor, Multiprotein Complexes, Humans, Carrier Proteins, Proto-Oncogene Proteins c-akt, Adaptor Proteins, Signal Transducing, Cell Proliferation, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 10%
Top 10%
Top 10%
bronze