Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Epidemiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Epidemiology Biomarkers & Prevention
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Breast Cancer Risk Is Associated with the Genes Encoding the DNA Double-Strand Break Repair Mre11/Rad50/Nbs1 Complex

Authors: Jyh-Cherng Yu; Huan-Ming Hsu; Chen-Yang Shen; Sou-Tong Chen; Giu-Cheng Hsu; Hui-Chun Wang;

Breast Cancer Risk Is Associated with the Genes Encoding the DNA Double-Strand Break Repair Mre11/Rad50/Nbs1 Complex

Abstract

Abstract The evolutionarily conserved Mre11-Rad50-Nbs1 (MRN) complex, consisting of proteins encoded by the genes Mre11, Rad50, and Nbs1, was recently shown to play a crucial role in DNA double-strand break (DSB) repair by recruiting the nuclear protein kinase ataxia telangiectasia mutated to DSB sites, leading to activation of this DNA repair network. Given the fact that carriers of defective mutation and polymorphic variants of ataxia telangiectasia mutated are at higher risk of developing breast cancer, we hypothesized a role of the MRN genes in determining breast cancer susceptibility. This hypothesis was examined both in a case control study of 559 breast cancer patients and 1,125 healthy women of single-nucleotide polymorphisms in Mre11, Rad50, and Nbs1 and by the in vivo detection of binding between Mre11 and BRCA1, encoded by the breast cancer susceptibility gene BRCA1. We were also interested in defining whether any association between MRN genes and breast cancer was modified by reproductive risk factors reflecting the level of estrogen exposure or susceptibility to estrogen exposure, as estrogen is known to initiate breast cancer development due to its metabolites causing DSB formation. Support for the hypothesis came from the observations that (a) one single-nucleotide polymorphism in Nbs1 was significantly associated with breast cancer risk, and a trend toward an increased risk of developing breast cancer was found in women harboring a greater number of putative high-risk genotypes of MRN genes (an adjusted odds ratio of 1.25 for each additional putative high-risk genotype; 95% confidence interval, 1.10-1.44); (b) this association between risk and the number of putative high-risk genotypes was stronger and more significant in women thought to be more susceptible to estrogen, i.e., those with no history of full-term pregnancy, those older (≥26 years of age) at first full-term pregnancy, or those having had fewer (<2) full-term pregnancies; the risk effect conferred by harboring a higher number of high-risk genotypes of MRN genes was more significant in women without a history of breast feeding; and (c) Mre11 and BRCA1 were shown to form a complex in vivo, and this interaction was increased by irradiation. This study supports the role of the MRN pathway in breast cancer development, further strengthening the suggestion that mechanisms regulating DSB repair may play a mutator role driving breast cancer pathogenesis. (Cancer Epidemiol Biomarkers Prev 2007;6(10):2024–32)

Keywords

Adult, Genetic Markers, MRE11 Homologue Protein, DNA Repair, Genotype, BRCA1 Protein, Breast Neoplasms, Cell Cycle Proteins, Middle Aged, Linkage Disequilibrium, Acid Anhydride Hydrolases, Carcinoma, Ductal, DNA-Binding Proteins, DNA Repair Enzymes, Case-Control Studies, Humans, DNA Breaks, Double-Stranded, Female, Genetic Predisposition to Disease, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research