Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proteins Structure F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proteins Structure Function and Bioinformatics
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions

Sequence‐based study of two related proteins with different folding behaviors

Authors: Favrin, Giorgio; Irbäck, Anders; Wallin, Stefan;

Sequence‐based study of two related proteins with different folding behaviors

Abstract

AbstractZSPA–1 is an engineered protein that binds to its parent, the three‐helix‐bundle Z domain of staphylococcal protein A. Uncomplexed ZSPA–1 shows a reduced helix content and a melting behavior that is less cooperative, compared with the wild‐type Z domain. Here we show that the difference in folding behavior between these two sequences can be partly understood in terms of an off‐lattice model with 5–6 atoms per amino acid and a minimalistic potential, in which folding is driven by backbone hydrogen bonding and effective hydrophobic attraction. Proteins 2004;54:000–000. © 2003 Wiley‐Liss, Inc.

Related Organizations
Keywords

Models, Molecular, Protein Folding, Protein Conformation, Molecular Sequence Data, FOS: Physical sciences, Biomolecules (q-bio.BM), Condensed Matter - Soft Condensed Matter, Protein Structure, Secondary, Protein Structure, Tertiary, Kinetics, Quantitative Biology - Biomolecules, Sequence Analysis, Protein, FOS: Biological sciences, Mutation, Thermodynamics, Soft Condensed Matter (cond-mat.soft), Amino Acid Sequence, Staphylococcal Protein A, Monte Carlo Method

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze