Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2021 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
https://doi.org/10.1101/2021.1...
Article . 2021 . Peer-reviewed
Data sources: Crossref
The Plant Cell
Article . 2022
versions View all 4 versions

Spatial differences in stoichiometry of EGR phosphatase and Microtubule-Associated Stress Protein 1 control root meristem activity during drought stress

Authors: Toshisangba Longkumer; Chih-Yun Chen; Marco Biancucci; Govinal Badiger Bhaskara; Paul E Verslues;

Spatial differences in stoichiometry of EGR phosphatase and Microtubule-Associated Stress Protein 1 control root meristem activity during drought stress

Abstract

AbstractDuring moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Clade E Growth-Regulating 2 (EGR2) protein phosphatase andMicrotubule Associated Stress Protein 1(MASP1) differed in their stoichiometry of expression across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψwstress. This, along with the ability of phosphomimic MASP1 to overcome EGR suppression of root meristem size and observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low ψwEGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low ψw. Conversely, both theegr1-1egr2-1andegr1-1egr2-1masp1-1mutants had similarly increased root cell size; but, onlyegr1-1egr2-1had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.One Sentence SummarySpatial differences in EGR-MASP1 expression and control of MASP1 phosphorylation adjust root meristem activity to regulate growth during drought stress.The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Paul E. Verslues (paulv@gate.sinica.edu.tw).

Keywords

Dehydration, Arabidopsis Proteins, Meristem, Arabidopsis, Plants, Genetically Modified, Plant Roots, Droughts, Protein Phosphatase 2C, Gene Expression Regulation, Plant, Plant Cells, Microtubule-Associated Proteins, Cell Division, Cell Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
hybrid