Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Renal Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Renal Physiology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice

Authors: Yue, Zhang; Jeff M, Sands; Donald E, Kohan; Raoul D, Nelson; Christopher F, Martin; Noel G, Carlson; Craig D, Kamerath; +3 Authors

Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice

Abstract

Osmotic reabsorption of water through aquaporin-2 (AQP2) in the inner medulla is largely dependent on the urea concentration gradients generated by urea transporter (UT) isoforms. Vasopressin (AVP) increases expression of both AQP2 and UT-A isoforms. Activation of the P2Y2 receptor (P2Y2-R) in the medullary collecting duct inhibits AVP-induced water flow. To gain further insights into the overarching effect of purinergic signaling on urinary concentration, we compared the protein abundances of AQP2 and UT-A isoforms between P2Y2-R knockout (KO) and wild-type (WT) mice under basal conditions and following AVP administration. Under basal conditions (a gel diet for 10 days), KO mice concentrated urine to a significantly higher degree, with 1.8-, 1.66-, and 1.29-fold higher protein abundances of AQP2, UT-A1, and UT-A2, respectively, compared with WT, despite comparable circulating AVP levels in both groups. Infusion of 1-desamino-8-d-arginine vasopressin (dDAVP; desmopressin; 1 ng/h sc) for 5 days resulted in 2.14-, 2.6-, and 2.22-fold higher protein abundances of AQP2, AQP3, and UT-A1, respectively, in the inner medullas of KO mice compared with WT mice. In response to acute (45 min) stimulation by AVP (0.2 unit/mouse sc), UT-A1 protein increased by 1.39- and 1.54-fold in WT and KO mice, respectively. These data suggest that genetic deletion of P2Y2-R results in increased abundances of key proteins involved in urinary concentration in the inner medulla, both under basal conditions and following AVP administration. Thus purinergic regulation may play a potential overarching role in balancing the effect of AVP on the urinary concentration mechanism.

Related Organizations
Keywords

Aquaporin 4, Mice, Knockout, Aquaporin 3, Kidney Medulla, Aquaporin 2, Receptors, Purinergic P2, Vasopressins, Absorption, Receptors, Purinergic P2Y2, Mice, Animals, Deamino Arginine Vasopressin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze