Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2008
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Evidence of Key Role of Cdk2 Overexpression in Pemphigus Vulgaris

Authors: LANZA, Alessandro; CIRILLO N; ROSSIELLO, Raffaele; RIENZO M; CUTILLO L; CASAMASSIMI, Amelia; de NIGRIS, Filomena; +5 Authors

Evidence of Key Role of Cdk2 Overexpression in Pemphigus Vulgaris

Abstract

The pathogenesis of pemphigus vulgaris (PV) is still poorly understood. Autoantibodies present in PV patients can promote detrimental effects by triggering altered transduction of signals, which results in a final acantholysis. To investigate mechanisms involved in PV, cultured keratinocytes were treated with PV serum. PV sera were able to promote the cell cycle progression, inducing the accumulation of cyclin-dependent kinase 2 (Cdk2). Microarray analysis on keratinocytes detected that PV serum induced important changes in genes coding for one and the same proteins with known biological functions involved in PV disease (560 differentially expressed genes were identified). Then, we used two different approaches to investigate the role of Cdk2. First, small interfering RNA depletion of Cdk2 prevented cell-cell detachment induced by PV sera. Second, pharmacological inhibition of Cdk2 activity through roscovitine prevented blister formation and acantholysis in the mouse model of the disease. In vivo PV serum was found to alter multiple different pathways by microarray analysis (1463 differentially expressed genes were identified). Major changes in gene expression induced by roscovitine were studied through comparison of effects of PV serum alone and in association with roscovitine. The most significantly enriched pathways were cell communication, gap junction, focal adhesion, adherens junction, and tight junction. Our data indicate that major Cdk2-dependent multiple gene regulatory events are present in PV. This alteration may influence the evolution of PV and its therapy.

Keywords

Keratinocytes, 330, 610, Biochemistry, Mice, pemphigus vulgaris; Cdk2-dependent; acantholysis; roscovitine, Animals, Humans, RNA, Small Interfering, Molecular Biology, Cells, Cultured, Oligonucleotide Array Sequence Analysis, Aurora Universities Network, Mice, Inbred BALB C, Cell Cycle, Cyclin-Dependent Kinase 2, Cell Biology, Enzyme Activation, Disease Models, Animal, Animals, Newborn, Gene Expression Regulation, Pemphigus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
gold