Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2001
versions View all 2 versions

Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila

Authors: S. Mark Wainwright; David Ish-Horowicz; Blandine Mille-Baker; N J Dibb; David A Baker;

Mae mediates MAP kinase phosphorylation of Ets transcription factors in Drosophila

Abstract

The evolutionarily conserved Ras/mitogen-activated protein kinase (MAPK) cascade is an integral part of the processes of cell division, differentiation, movement and death. Signals received at the cell surface are relayed into the nucleus, where MAPK phosphorylates and thereby modulates the activities of a subset of transcription factors. Here we report the cloning and characterization of a new component of this signal transduction pathway called Mae (for modulator of the activity of Ets). Mae is a signalling intermediate that directly links the MAPK signalling pathway to its downstream transcription factor targets. Phosphorylation by MAPK of the critical serine residue (Ser 127) of the Drosophila transcription factor Yan depends on Mae, and is mediated by the binding of Yan to Mae through their Pointed domains. This phosphorylation is both necessary and sufficient to abrogate transcriptional repression by Yan. Mae also regulates the activity of the transcriptional activator Pointed-P2 by a similar mechanism. Mae is essential for the normal development and viability of Drosophila, and is required in vivo for normal signalling of the epidermal growth factor receptor. Our study indicates that MAPK signalling specificity may depend on proteins that couple specific substrates to the kinase.

Related Organizations
Keywords

Genes, Essential, Base Sequence, MAP Kinase Signaling System, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, DNA, Immunohistochemistry, DNA-Binding Proteins, ErbB Receptors, Drosophila melanogaster, Gene Expression Regulation, Genes, Reporter, Animals, Drosophila Proteins, Insect Proteins, Amino Acid Sequence, Mitogen-Activated Protein Kinases, Carrier Proteins, Eye Proteins, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%