Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia

Authors: Satu, Massinen; Kristiina, Tammimies; Isabel, Tapia-Páez; Hans, Matsson; Marie-Estelle, Hokkanen; Ola, Söderberg; Ulf, Landegren; +4 Authors

Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia

Abstract

Dyslexia, or specific reading disability, is the unexpected failure in learning to read and write when intelligence and senses are normal. One of the susceptibility genes, DYX1C1, has been implicated in neuronal migration, but little is known about its interactions and functions. As DYX1C1 was suggested to interact with the U-box protein CHIP (carboxy terminus of Hsc70-interacting protein), which also participates in the degradation of estrogen receptors alpha (ERalpha) and beta (ERbeta), we hypothesized that the effects of DYX1C1 might be at least in part mediated through the regulation of ERs. ERs have shown to be important in brain development and cognitive functions. Indeed, we show that DYX1C1 interacts with both ERs in the presence of 17beta-estradiol, as determined by co-localization, co-immunoprecipitation and proximity ligation assays. Protein levels of endogenous ERalpha or exogenous ERbeta were reduced upon over-expression of DYX1C1, resulting in decreased transcriptional responses to 17beta-estradiol. Furthermore, we detected in vivo complexes of DYX1C1 with ERalpha or ERbeta at endogenous levels along neurites of primary rat hippocampal neurons. Taken together, our data suggest that DYX1C1 is involved in the regulation of ERalpha and ERbeta, and may thus affect the brain development and regulate cognitive functions. These findings provide novel insights into the function of DYX1C1 and link neuronal migration and developmental dyslexia to the estrogen-signaling effects in the brain.

Keywords

Neurons, Estradiol, Estrogen Receptor alpha, Nuclear Proteins, Estrogens, Nerve Tissue Proteins, Cell Line, Rats, Dyslexia, Cytoskeletal Proteins, Protein Transport, Animals, Estrogen Receptor beta, Humans, Carrier Proteins, Cells, Cultured, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze