Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Calcified Tissue Int...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Calcified Tissue International
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Involvement of the Osteoinductive Factors, Tmem119 and BMP-2, and the ER Stress Response PERK–eIF2α–ATF4 Pathway in the Commitment of Myoblastic into Osteoblastic Cells

Authors: Ken-ichiro Tanaka; Toshitsugu Sugimoto; Toru Yamaguchi; Geoffrey N. Hendy; Geoffrey N. Hendy; Hiroshi Kaji; Lucie Canaff; +2 Authors

Involvement of the Osteoinductive Factors, Tmem119 and BMP-2, and the ER Stress Response PERK–eIF2α–ATF4 Pathway in the Commitment of Myoblastic into Osteoblastic Cells

Abstract

The osteoinductive factors BMP-2 and Tmem119 that promote the differentiation of myoblasts into osteoblasts, each increase the levels of the other. However, the relative contributions of BMP-2 and Tmem119 to the osteogenic differentiation and the mechanisms involved are incompletely understood. In the present study, we examined the relationship among BMP-2, Tmem119, and the PERK-eIF2α-ATF4 endoplasmic reticulum (ER) stress response pathway in the differentiation of C2C12 myoblasts into osteoblastic cells. Both BMP-2 and Tmem119 induced levels of the osteoblast markers Runx2, Osterix, Col1a1, ALP, and osteocalcin, as well as mineralization. BMP-2 activation of the ER stress sensor PERK stimulated phosphorylation of eIF2α and led to increased biosynthesis of the osteoblast differentiation factor ATF4. When dephosphorylation of eIF2α was blocked by the selective inhibitor salubrinal, the osteogenic effects of BMP-2 and Tmem119 were enhanced further. Although BMP-2 stimulated both P-eIF2α and ATF4 levels, Tmem119 had no effect on P-eIF2α but stimulated ATF4 only. Reduction in endogenous Tmem119 levels by siRNA reduced both basal and BMP-2-stimulated levels of the ATF4 protein. In conclusion, BMP-2 stimulates differentiation of myoblasts into osteoblasts via the PERK-eIF2α-ATF4 pathway but in addition stimulates Tmem119, which itself increases ATF4. Hence, BMP-2 stimulates ATF4 both dependently and independently of the PERK-eIF2α ER stress response pathway.

Keywords

Osteoblasts, Thiourea, Bone Morphogenetic Protein 2, Membrane Proteins, Cell Differentiation, 3T3 Cells, Protein Serine-Threonine Kinases, Endoplasmic Reticulum, Endoplasmic Reticulum Stress, Activating Transcription Factor 4, Recombinant Proteins, Cell Line, Myoblasts, Mice, Gene Expression Regulation, Cinnamates, Animals, Humans, RNA, Small Interfering, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%