Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Cyclearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Cycle
Article
Data sources: UnpayWall
Cell Cycle
Article . 2012 . Peer-reviewed
Data sources: Crossref
Cell Cycle
Article . 2012
versions View all 2 versions

Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations

Authors: Stephanie, Smith-Berdan; Koen, Schepers; Alan, Ly; Emmanuelle, Passegué; E Camilla, Forsberg;

Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations

Abstract

The bone marrow (BM) niche is essential for lifelong hematopoietic stem cell (HSC) maintenance, proliferation and differentiation. Several BM cell types, including osteoblast lineage cells (OBC), mesenchymal stem cells (MSC) and endothelial cells (EC) have been implicated in supporting HSC location and function, but the relative importance of these cell types and their secreted ligands remain controversial. We recently found that the cell surface receptors Robo4 and CXCR4 cooperate to localize HSC to BM niches. We hypothesized that Slit2, a putative ligand for Robo4, cooperates with the CXCR4 ligand SDF1 to direct HSC to specific BM niche sites. Here, we have isolated OBC, MSC and EC by flow cytometry and determined their frequency within the bone marrow and the relative mRNA levels of Slit2, SDF1 and Robo4. We found that expression of Slit2 and SDF1 were dynamically regulated in MSC and OBC-like populations following radiation, while Robo4 expression was restricted to EC. Radiation also significantly affected the cellularity and frequency of both the non-adherent and adherent cells within the BM stroma. These data support a physiological role for Slit2 in regulating the dynamic function of Robo-expressing cells within BM niches at steady state and following radiation.

Related Organizations
Keywords

Receptors, CXCR4, Reverse Transcriptase Polymerase Chain Reaction, Endothelial Cells, Bone Marrow Cells, Mesenchymal Stem Cells, Nerve Tissue Proteins, Receptors, Cell Surface, Slit Homolog 2 Protein, Flow Cytometry, Hematopoietic Stem Cells, Chemokine CXCL12, Mice, Inbred C57BL, Mice, Animals, Intercellular Signaling Peptides and Proteins, Receptors, Immunologic, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
bronze