Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Molecular Mechanisms Responsible for the Selective and Low-Grade Induction of Proinflammatory Mediators in Murine Macrophages by Lipopolysaccharide

Authors: Urmila, Maitra; Hui, Deng; Trevor, Glaros; Bianca, Baker; Daniel G S, Capelluto; Zihai, Li; Liwu, Li;

Molecular Mechanisms Responsible for the Selective and Low-Grade Induction of Proinflammatory Mediators in Murine Macrophages by Lipopolysaccharide

Abstract

Abstract Low-dose endotoxemia is prevalent in humans with adverse health conditions, and it correlates with the pathogenesis of chronic inflammatory diseases such as atherosclerosis, diabetes, and neurologic inflammation. However, the underlying molecular mechanisms are poorly understood. In this study, we demonstrate that subclinical low-dose LPS skews macrophages into a mild proinflammatory state, through cell surface TLR4, IL-1R–associated kinase-1, and the Toll-interacting protein. Unlike high-dose LPS, low-dose LPS does not induce robust activation of NF-κB, MAPKs, PI3K, or anti-inflammatory mediators. Instead, low-dose LPS induces activating transcription factor 2 through Toll-interacting protein–mediated generation of mitochondrial reactive oxygen species, allowing mild induction of proinflammatory mediators. Low-dose LPS also suppresses PI3K and related negative regulators of inflammatory genes. Our data reveal novel mechanisms responsible for skewed and persistent low-grade inflammation, a cardinal feature of chronic inflammatory diseases.

Related Organizations
Keywords

Intracellular Fluid, Lipopolysaccharides, Mice, Knockout, Activating Transcription Factor 2, Macrophages, Dose-Response Relationship, Immunologic, Intracellular Signaling Peptides and Proteins, Bone Marrow Cells, Mitochondria, Mice, Inbred C57BL, Mice, Interleukin-1 Receptor-Associated Kinases, Gene Expression Regulation, Animals, Inflammation Mediators, Phosphatidylinositol 3-Kinase, Reactive Oxygen Species, Cells, Cultured, Phosphoinositide-3 Kinase Inhibitors, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    115
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
115
Top 1%
Top 10%
Top 1%
bronze