Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Microbiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 1993 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis

Authors: Kathrin Vogelsang; Jürgeni Heinisch; Cornelis P. Hollenberg; Lutz Kirchrath; Thomas Liesen;

Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis

Abstract

SummaryWe have undertaken a study of phosphofructokinase (PFK; E.C. 2.7.1.11) in the yeast Kluyveromyces lactis. Like other eukaryotic PFKs, the K. lactis enzyme is activated by the allosteric effectors AMP and fructose‐2,6‐bisphosphate. PFK activity is induced in cells grown on glucose as compared to ethanol‐grown cells, in contrast to the constitutive expression of PFK in Saccharomyces cerevisiae. We show here that phosphofructokinase of the yeast K. lactis is composed of two non‐identical types of sub‐units, encoded by the genes KIPFK1 and KIPFK2. We have cloned and sequenced both genes. KIPFK1 and KIPFK2 encode the α‐ and the β‐PFK subunits with deduced molecular weights of 109.336 Da and 104.074Da, respectively. Sequence analysis indicates that the genes evolved from a double duplication event. Null mutants in either of the genes lack detectable PFK activity in vitro and the respective subunits cannot be detected on Western blots. In contrast to the situation in S. cerevisiae, Klpfk1 Klpfk2 double mutants retain the ability to grow on glucose. However. Klpfk2 mutants and the double mutants do not grow on glucose, when respiration is blocked. These data suggest that the pentose phosphate pathway and respiration play a substantial role in glucose utilization by K. lactis. The K. lactis PFK genes can be expressed independently in S. cerevisiae and each of them complements the glucose‐negative phenotype of pfk1 pfk2 double deletion mutants in this yeast. Expression of both K. lactis PFK genes simultaneously in S. cerevisiae pfk double deletion mutants complements for PFK activity. However, expression of a combination of PFK genes from K. lactis and S. cerevisiae does not lead to the production of a functional enzyme.

Keywords

Base Sequence, Sequence Homology, Amino Acid, Phosphofructokinase-1, Recombinant Fusion Proteins, Genes, Fungal, Genetic Complementation Test, Molecular Sequence Data, Saccharomyces cerevisiae, Fungal Proteins, Pentose Phosphate Pathway, Kluyveromyces, Open Reading Frames, Amino Acid Sequence, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%