Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2005 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2005
versions View all 2 versions

Altered Pharmacokinetics of 1α,25-Dihydroxyvitamin D3and 25-Hydroxyvitamin D3in the Blood and Tissues of the 25-Hydroxyvitamin D-24-Hydroxylase (Cyp24a1) Null Mouse

Authors: Sonoko, Masuda; Valarie, Byford; Alice, Arabian; Yoshiyuki, Sakai; Marie B, Demay; René, St-Arnaud; Glenville, Jones;

Altered Pharmacokinetics of 1α,25-Dihydroxyvitamin D3and 25-Hydroxyvitamin D3in the Blood and Tissues of the 25-Hydroxyvitamin D-24-Hydroxylase (Cyp24a1) Null Mouse

Abstract

The 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) plays an important role in regulating concentrations of both the precursor 25-hydroxyvitamin D3 [25(OH)D3] and the hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)(2)D3]. Previous studies suggest that Cyp24a1-null mice cannot clear exogenous 1alpha,25(OH)2D3 efficiently. Here, we examined the metabolic clearance in Cyp24a1-null mice in vivo and in vitro using a physiological dose of [1beta-3H]1alpha,25(OH)2D3 or [26,27-methyl-3H]25(OH)D3. Cyp24a1-null mice showed difficulty in eliminating [1beta-3H]1alpha,25(OH)2D3 from the bloodstream and tissues over a 96-h time course, whereas heterozygotic mice eliminated the hormone within 6-12 h, although there was clearance of labeled hormone into water-soluble products involving liver in both genotypes. RT-PCR showed that Cyp24a1-null mice have decreased expression of 25-hydroxyvitamin D-1alpha-hydroxylase that must play a role in their survival. After the administration of [26,27-methyl-3H]25(OH)D3, Cyp24a1-null mice showed higher [26,27-methyl-3H]25(OH)D3 levels and no [26,27-methyl-3H]24,25(OH)2D3 formation, whereas heterozygotic mice showed significant [26,27-methyl-3H]24,25(OH)2D3 production. Based upon in vitro experiments, keratinocytes from Cyp24a1-null mice fail to synthesize [1beta-3H]calcitroic acid from [1beta-3H]1alpha,25(OH2D3 or [26,27-methyl-3H]24,25(OH)2D3 from [26,27-methyl-3H]25(OH)D3 as do control mice, confirming the target cell catabolic role of CYP24A1 in these processes. Finally, the role of vitamin D receptor (VDR) in the vitamin D catabolic cascade was examined using VDR-null mice. Keratinocytes from VDR-null mice failed to metabolize [1beta-3H]1alpha,25(OH)2D3 confirming the importance of vitamin D-inducible, VDR-mediated, C24 oxidation pathway in target cells. These results suggest that the absence of CYP24A1 or VDR retards catabolism of 1alpha,25(OH)2D3 and 25(OH)D3, reinforcing the physiological importance of CYP24A1 in vitamin D homeostasis.

Keywords

25-Hydroxyvitamin D3 1-alpha-Hydroxylase, Keratinocytes, Mice, Knockout, Reverse Transcriptase Polymerase Chain Reaction, In Vitro Techniques, Mice, Calcitriol, Cytochrome P-450 Enzyme System, Steroid Hydroxylases, Animals, Homeostasis, Receptors, Calcitriol, Vitamin D3 24-Hydroxylase, Calcifediol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    169
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
169
Top 10%
Top 1%
Top 10%
bronze