Powered by OpenAIRE graph

Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium

Authors: L L, Clarke; M C, Harline; L R, Gawenis; N M, Walker; J T, Turner; G A, Weisman;

Extracellular UTP stimulates electrogenic bicarbonate secretion across CFTR knockout gallbladder epithelium

Abstract

The loss of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated transepithelial HCO3 − secretion contributes to the pathogenesis of pancreatic and biliary disease in cystic fibrosis (CF) patients. Recent studies have investigated P2Y2 nucleotide receptor agonists, e.g., UTP, as a means to bypass the CFTR defect by stimulating Ca2+-activated Cl− secretion. However, the value of this treatment in facilitating transepithelial HCO3 − secretion is unknown. Gallbladder mucosae from CFTR knockout mice were used to isolate the Ca2+-dependent anion conductance during activation of luminal P2Y2receptors. In Ussing chamber studies, UTP stimulated a transient peak in short-circuit current ( I sc) that declined to a stable plateau phase lasting 30–60 min. The plateau I sc after UTP was Cl− independent, HCO3 − dependent, insensitive to bumetanide, and blocked by luminal DIDS. In pH stat studies, luminal UTP increased both I sc and serosal-to-mucosal HCO3 − flux ( J s→m) during a 30-min period. Substitution of Cl− with gluconate in the luminal bath to inhibit Cl−/HCO3 −exchange did not prevent the increase in J s→mand I sc during UTP. In contrast, luminal DIDS completely inhibited UTP-stimulated increases in J s→m and I sc. We conclude that P2Y2 receptor activation results in a sustained (30–60 min) increase in electrogenic HCO3 − secretion that is mediated via an intracellular Ca2+-dependent anion conductance in CF gallbladder.

Related Organizations
Keywords

Mice, Knockout, Cystic Fibrosis, Colforsin, Age Factors, Electric Conductivity, Cystic Fibrosis Transmembrane Conductance Regulator, Gallbladder, Biological Transport, Epithelial Cells, 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid, Hydrogen-Ion Concentration, In Vitro Techniques, Membrane Potentials, Electrophysiology, Mice, Inbred C57BL, Bicarbonates, Mice, Chlorides, Animals, Calcium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%