Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Screening for candidate genes involved in tolerance to organic solvents in yeast

Authors: K.Matsui; T.Hirayama; K.Kuroda; K.Shirahige; T.Ashikari; M.Ueda;

Screening for candidate genes involved in tolerance to organic solvents in yeast

Abstract

Saccharomyces cerevisiae mutant strain, KK-211, isolated from serial culture in medium containing isooctane showed an extremely higher tolerance to the hydrophobic organic-solvents, which are toxic to yeast cells compared to the wild-type parent strain, DY-1. To detect genes that are related to this tolerance, a DNA microarray analysis was performed using mRNAs isolated from strains DY-1 and KK-211. Fourteen genes were identified as being related to the tolerance. The expression of 12 genes including ICT1, YNL190W, and PRY3, was induced while the expression of two genes including PHO84 was repressed in strain KK-211. Two genes, ICT1 and YNL190W showed the same profile in the DNA microarray analysis and a differential display-polymerase chain reaction analysis. But, there is no detectable difference in the expression profile of KK-211 cells cultured with or without isooctane. The results suggest that change in expression levels of multiple genes that confer the modification function of the cell surface, not by a single gene, might be required for yeast cell tolerance to organic solvents.

Related Organizations
Keywords

Genes, Fungal, Mutation, Solvents, Saccharomyces cerevisiae, Organic Chemicals, Microarray Analysis, Octanes, Culture Media

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%