Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Immunology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Differential regulation of Nr4a subfamily nuclear receptors following mast cell activation

Authors: Anders, Lundequist; Gabriela, Calounova; Helena, Wensman; Elin, Rönnberg; Gunnar, Pejler;

Differential regulation of Nr4a subfamily nuclear receptors following mast cell activation

Abstract

The biological function of the Nr4a subfamily of nuclear receptors is only partially understood. Here we show for the fist time that mast cell (MC) activation processes involve the regulation of Nr4a factors. Exposure of murine bone marrow-derived MCs (BMMCs) to live bacteria causes a robust and selective upregulation of all Nr4a members (Nr4a1-Nr4a3). In response to purified LPS, strong upregulation of Nr4a3, but not of Nr4a1 or Nr4a2 was seen. Nr4a3 expression was also induced after the activation of BMMCs by IgE receptor cross-linking. Moreover, Nr4a expression was induced in activated human MCs. As shown by Western blot analysis, Nr4a phosphorylation was induced by IgE receptor cross-linking and calcium ionophore stimulation of BMMCs and LAD2 cells, respectively. By using various inhibitors of signaling pathways, Nr4a3 induction in BMMCs was shown to be strongly dependent on Gö6976-sensitive kinases and partially dependent on the nuclear factor of activated T-cells (NFAT) pathway, while nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) inhibition failed to inhibit Nr4a3 expression in BMMCs. Together, these data reveal selective induction of Nr4a family members in activated MCs and implicate Nr4a family nuclear receptors in the regulation of MC function.

Keywords

Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Fluorescent Antibody Technique, Mice, Gene Expression Regulation, Nuclear Receptor Subfamily 4, Group A, Member 3, Nuclear Receptor Subfamily 4, Group A, Member 2, Nuclear Receptor Subfamily 4, Group A, Member 1, Animals, Humans, Mast Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%