Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eukaryotic Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eukaryotic Cell
Article . 2006 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eukaryotic Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eukaryotic Cell
Article . 2006
versions View all 2 versions

Deletion of RTS1 , Encoding a Regulatory Subunit of Protein Phosphatase 2A, Results in Constitutive Amino Acid Signaling via Increased Stp1p Processing

Authors: Nadine, Eckert-Boulet; Katrin, Larsson; Boqian, Wu; Peter, Poulsen; Birgitte, Regenberg; Jens, Nielsen; Morten C, Kielland-Brandt;

Deletion of RTS1 , Encoding a Regulatory Subunit of Protein Phosphatase 2A, Results in Constitutive Amino Acid Signaling via Increased Stp1p Processing

Abstract

ABSTRACT In Saccharomyces cerevisiae , extracellular amino acids are sensed at the plasma membrane by the SPS sensor, consisting of the transporter homologue Ssy1p, Ptr3p, and the endoprotease Ssy5p. Amino acid sensing results in proteolytic truncation of the transcription factors Stp1p and Stp2p, followed by their relocation from the cytoplasm to the nucleus, where they activate transcription of amino acid permease genes. We screened a transposon mutant library for constitutively signaling mutants, with the aim of identifying down-regulating components of the SPS-mediated pathway. Three isolated mutants were carrying a transposon in the RTS1 gene, which encodes a regulatory subunit of protein phosphatase 2A. We investigated the basal activity of the AGP1 and BAP2 promoters in rts1Δ cells and found increased transcription from these promoters, as well as increased Stp1p processing, even in the absence of amino acids. Based on our findings we propose that the phosphatase complex containing Rts1p keeps the SPS-mediated pathway down-regulated in the absence of extracellular amino acids by dephosphorylating a component of the pathway.

Keywords

Saccharomyces cerevisiae Proteins, Amino Acid Transport Systems, Nuclear Proteins, RNA-Binding Proteins, Epistasis, Genetic, Saccharomyces cerevisiae, Protein Subunits, Amino Acid Transport Systems, Neutral, Genes, Reporter, Leucine, Gene Expression Regulation, Fungal, Phosphoprotein Phosphatases, Citrulline, Protein Phosphatase 2, Amino Acids, Promoter Regions, Genetic, Protein Processing, Post-Translational, Gene Deletion, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
gold