Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1997 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Involvement of a Tissue-Specific RNA Recognition Motif Protein in Drosophila Spermatogenesis

Authors: S R, Haynes; M T, Cooper; S, Pype; D T, Stolow;

Involvement of a Tissue-Specific RNA Recognition Motif Protein in Drosophila Spermatogenesis

Abstract

RNA binding proteins mediate posttranscriptional regulation of gene expression via their roles in nuclear and cytoplasmic mRNA metabolism. Many of the proteins involved in these processes have a common RNA binding domain, the RNA recognition motif (RRM). We have characterized the Testis-specific RRM protein gene (Tsr), which plays an important role in spermatogenesis in Drosophila melanogaster. Disruption of Tsr led to a dramatic reduction in male fertility due to the production of spermatids with abnormalities in mitochondrial morphogenesis. Tsr is located on the third chromosome at 87F, adjacent to the nuclear pre-mRNA binding protein gene Hrb87F. A 1.7-kb Tsr transcript was expressed exclusively in the male germ line. It encoded a protein containing two RRMs similar to those found in HRB87F as well as a unique C-terminal domain. TSR protein was located in the cytoplasm of spermatocytes and young spermatids but was absent from mature sperm. The cellular proteins expressed in premeiotic primary spermatocytes from Tsr mutant and wild-type males were assessed by two-dimensional gel electrophoresis. Lack of TSR resulted in the premature expression of a few proteins prior to meiosis; this was abolished by a transgenic copy of Tsr. These data demonstrate that TSR negatively regulated the expression of some testis proteins and, in combination with its expression pattern and subcellular localization, suggest that TSR regulates the stability or translatability of some mRNAs during spermatogenesis.

Related Organizations
Keywords

Male, Cytoplasm, Base Sequence, Microfilament Proteins, Molecular Sequence Data, RNA-Binding Proteins, Drosophila melanogaster, Phenotype, Testis, Mutagenesis, Site-Directed, Animals, Drosophila Proteins, RNA, Amino Acid Sequence, RNA, Messenger, Spermatogenesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
bronze