Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 1987 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Analysis of upstream activation sites of yeast ribosomal protein genes

Authors: Woudt, L. P.; Mager, W. H.; Nieuwint, R. T.; Wassenaar, G. M.; van der Kuyl, A. C.; Murre, J. J.; Hoekman, M. F.; +2 Authors

Analysis of upstream activation sites of yeast ribosomal protein genes

Abstract

Transcription of the gene encoding yeast ribosomal protein L25 was previously shown to be activated through tandemly arranged upstream sequence elements that most rp-genes in yeast have in common. A single copy of such a conserved element is now demonstrated to restore transcription of an inactivated heterologous gene, which confirms its role as a genuine UAS: UASrpg. Though a single box is sufficient to activate transcription, most rp-genes harbor two neighbouring elements. Northern analysis of mutants of the L25 upstream region lacking either the gene-distal (RPG1) or the gene-proximal (RPG2) box provided evidence that RPG2 is significantly more effective than RPG1 in vivo. Moreover the sum of the effects of the individual boxes as measured separately is significantly lower than their joint effect, supporting cooperative interaction between the two boxes in vivo. Making use of oligomer-insertion experiments several additional features of the UASrpg were elucidated. First of all we confirmed that the extent of transcription activation by the UASrpg depends upon the orientation of the element. Secondly we show that a certain minimal distance (greater than 100 n) between UASrpg and the transcription initiation site is required for transcription activation. Finally, internal deletion of the L25-upstream region as well as oligomer-insertion shed some light on the nucleotide requirements of the UASrpg.

Country
Netherlands
Related Organizations
Keywords

Ribosomal Proteins, Base Sequence, Transcription, Genetic, Yeasts, Genes, Fungal, Mutation, Chromosome Mapping

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 10%
gold