Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Stringent Control of NFE2L3 (Nuclear Factor, Erythroid 2-Like 3; NRF3) Protein Degradation by FBW7 (F-box/WD Repeat-containing Protein 7) and Glycogen Synthase Kinase 3 (GSK3)

Authors: Meenakshi B. Kannan; Volker Blank; Isadore Dodard-Friedman;

Stringent Control of NFE2L3 (Nuclear Factor, Erythroid 2-Like 3; NRF3) Protein Degradation by FBW7 (F-box/WD Repeat-containing Protein 7) and Glycogen Synthase Kinase 3 (GSK3)

Abstract

The NFE2L3 transcription factor has been implicated in various cellular processes, including carcinogenesis, stress response, differentiation, and inflammation. Previously it has been shown that NFE2L3 has a rapid turnover and is stabilized by proteasomal inhibitors. The mechanisms regulating the degradation of this protein have not been investigated. Here we report ubiquitination of NFE2L3 and demonstrate that F-box/WD repeat-containing protein 7 (FBW7 or FBWX7), a component of Skp1, Cullin 1, F-box containing complex (SCF)-type E3 ligase, is the E3 ligase mediating the degradation of NFE2L3. We showed that FBW7 interacts with NFE2L3 and that dimerization of FBW7 is required for the degradation of the transcription factor. We also demonstrate that the kinase glycogen synthase kinase 3 (GSK3) mediates the FBW7-dependent ubiquitination of NFE2L3. We show phosphorylation of NFE2L3 by GSK3 and its significance in the regulation of NFE2L3 by the tumor suppressor FBW7. FBW7 abrogated NFE2L3-mediated repression of thequinone oxidoreductase 1 (NQO1) gene antioxidant response element (ARE). Our findings reveal FBW7 and GSK3 as novel regulators of the NFE2L3 transcription factor and a potential mechanism by which FBW7 might regulate detoxification and the cellular response to stress.

Related Organizations
Keywords

Proteasome Endopeptidase Complex, F-Box-WD Repeat-Containing Protein 7, Ubiquitin, F-Box Proteins, Ubiquitin-Protein Ligases, Ubiquitination, Cell Cycle Proteins, Cell Line, Glycogen Synthase Kinase 3, Basic-Leucine Zipper Transcription Factors, Proteolysis, Humans, Phosphorylation, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
gold