Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2001
versions View all 2 versions

Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse

Authors: T B, Cole; A, Martyanova; R D, Palmiter;

Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse

Abstract

Zinc-enriched (ZEN) neurons are distributed widely throughout the brain and spinal cord. Synaptic vesicle zinc in these neurons is thought to function as a neuromodulator upon its release into the synaptic cleft. Consistent with this possibility, zinc or zinc chelators can alter spatial learning, working memory, and nociception in rodents. Here we use zinc transporter-3 (ZnT3) knockout mice, which are depleted of synaptic vesicle zinc, to assess the consequences of removing this potential neuromodulator on the behavior of adult mice. ZnT3 knockout mice performed equally as well as wild-type mice in the rotarod, pole, and cagetop tests of motor coordination. They exhibited normal thermal nociception in the hot-plate and tail-flick tests, and had similar olfactory, auditory and sensorimotor gating capabilities as wild-type mice. ZnT3 knockout mice behaved similarly as wild-type mice in the open field test and in the elevated plus maze test of anxiety. They exhibited normal learning and memory in the passive avoidance, Morris water maze, and fear conditioning tasks, and normal working and reference memory in a water version of the radial arm maze. We conclude that synaptic vesicle zinc is not essential for mice to be able to perform these tasks, despite the abundance of ZEN neurons in the relevant regions of the CNS. Either the neuromodulatory effects of zinc are not relevant for the tasks tested here, or mice are able to compensate easily for the absence of synaptic vesicle zinc.

Related Organizations
Keywords

Central Nervous System, Male, Mice, Knockout, Movement, Nociceptors, Anxiety, Smell, Mice, Zinc, Hearing, Memory, Space Perception, Exploratory Behavior, Animals, Learning, Female, Synaptic Vesicles, Carrier Proteins, Psychomotor Performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    114
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
114
Top 10%
Top 10%
Top 10%