Structural and Functional Characterization of the Interdomain Interaction in the Mineralocorticoid Receptor
Structural and Functional Characterization of the Interdomain Interaction in the Mineralocorticoid Receptor
Abstract The mineralocorticoid receptor (MR) plays a central role in electrolyte homeostasis and in cardiovascular disease. We have previously reported a ligand-dependent N/C-interaction in the MR. In the present study we sought to fully characterize the MR N/C-interaction. By using a range of natural and synthetic MR ligands in a mammalian two-hybrid assay we demonstrate that in contrast to aldosterone, which strongly induces the interaction, the physiological ligands deoxycorticosterone and cortisol weakly promote the interaction but predominantly inhibit the aldosterone-mediated N/C-interaction. Similarly, progesterone and dexamethasone antagonize the interaction. In contrast, the synthetic agonist 9α-fludrocortisol robustly induces the interaction. The ability of the N/C interaction to discriminate between MR agonists suggests a subtle conformational difference in the ligand-binding domain induced by these agonists. We also demonstrate that the N/C interaction is not cell specific, consistent with the evidence from a glutathione-S-transferase pull-down assay, of a direct protein-protein interaction between the N- and C-terminal domains of the MR. Examination of a panel of deletions in the N terminus suggests that several regions may be critical to the N/C-interaction. These studies have identified functional differences between physiological MR ligands, which suggest that the ligand-specific dependence of the N/C-interaction may contribute to the differential activation of the MR that has been reported in vivo.
Hydrocortisone, Protein Conformation, Swine, Ligands, Cell Line, Protein Structure, Tertiary, Rats, Receptors, Mineralocorticoid, Cell Line, Tumor, Two-Hybrid System Techniques, COS Cells, Chlorocebus aethiops, Animals, Humans, Desoxycorticosterone, Glutathione Transferase
Hydrocortisone, Protein Conformation, Swine, Ligands, Cell Line, Protein Structure, Tertiary, Rats, Receptors, Mineralocorticoid, Cell Line, Tumor, Two-Hybrid System Techniques, COS Cells, Chlorocebus aethiops, Animals, Humans, Desoxycorticosterone, Glutathione Transferase
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
