Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 1988 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Current Genetics
Article . 1988
versions View all 3 versions

Arginine repression of the Saccharomyces cerevisiae ARG1 gene

Comparison of the ARG1 and ARG3 control regions
Authors: Crabeel, Marjolaine; Seneca, Sara; Devos, Katrien; Glansdorff, Nicolas;

Arginine repression of the Saccharomyces cerevisiae ARG1 gene

Abstract

The Saccharomyces cerevisiae ARG1 gene coding for argininosuccinate synthetase has been isolated and the nucleotide sequence of both its control region and of its amino terminal end coding region determined. The startpoint of transcription was established by S1-mapping and reverse transcriptase procedures. Northern blot hybridizations showed that whereas arginine-specific repression reduced the enzyme activity fivefold, it did not reduce the steady state level of the corresponding messenger in proportion; by analogy with the coregulated ARG3 gene, this result suggests a post-transcriptional regulatory mechanism. In contrast, proportionally between enzyme activity and mRNA content was observed under conditions where general amino acid control (known to be transcriptional) was operating. Comparing the 5' untranscribed domains of ARG1 and ARG3 revealed a first region of homology between the TATA box and the transcription startpoint. In this region a 10 bp (ARG3) or 11 bp (ARG1) central box is flanked by two segments which, by mutation, have been shown to be part of the ARG operator (Crabeel et al. 1985). The repressor is assumed to bind at this primary target site prior to establishing contacts with the proximal part of the nascent mRNA molecule (Crabeel et al. 1985). By in vitro directed deletion mutagenesis we show that the central conserved box of ARG3 is not essential for arginine-specific repression to occur. Another region of homology was found in the leader part of the messenger RNA; deletion of this region causes a small reduction in ARG3 expression but also does not alter regulation. Neither of these two regions are thus part of the primary repressor target site. In addition, in terms of post-transcriptional regulation, the latter result indicates that no sequence specificity is required in the RNA recognition step.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, Genes, Fungal, Molecular Sequence Data, ARG3 gene, Genes, Homeobox, Saccharomyces cerevisiae, Argininosuccinate Synthase, Arginine, TATA box, ARG1 gene, Ligases, Genes, argininosuccinate synthetase, Amino Acid Sequence, RNA, Messenger, Chromosome Deletion, Enzyme Repression

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%