Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Hepcidin inhibition on the effect of osteogenesis in zebrafish

Authors: Yu, Jiang; Yilin, Yan; Xiao, Wang; Guoxing, Zhu; You-Jia, Xu;

Hepcidin inhibition on the effect of osteogenesis in zebrafish

Abstract

Iron overload, as a risk factor for osteoporosis, can result in the up-regulation of Hepcidin, and Hepcidin knockout mice display defects in their bone microarchitecture. However, the molecular and genetic mechanisms underlying Hepcidin deficiency-derived bone loss remain unclear. Here, we show that hepcidin knockdown in zebrafish using morpholinos leads to iron overload. Furthermore, a mineralization delay is observed in osteoblast cells in hepcidin morphants, and these defects could be partially restored with microinjection of hepcidin mRNA. Quantitative real-time PCR analyses revealed the osteoblast-specific genes alp, runx2a, runx2b, and sp7 in morphants are down-regulated. Furthermore, we confirmed qRT-PCR results by in situ hybridization and found down-regulated genes related to osteoblast function in hepcidin morphants. Most importantly, we revealed that hepcidin was capable of removing whole-body iron which facilitated larval recovery from the reductions in bone formation and osteogenesis induced by iron overload.

Related Organizations
Keywords

Iron Overload, Osteoblasts, Iron, Down-Regulation, Zebrafish Proteins, Bone and Bones, Morpholinos, Hepcidins, Osteogenesis, Gene Knockdown Techniques, Animals, Amino Acid Sequence, RNA, Messenger, Phylogeny, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%