Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Overexpression of the Saccharomyces cerevisiaeMagnesium Transport System Confers Resistance to Aluminum Ion

Authors: C W, MacDiarmid; R C, Gardner;

Overexpression of the Saccharomyces cerevisiaeMagnesium Transport System Confers Resistance to Aluminum Ion

Abstract

Ionic aluminum (Al3+) is toxic to plants, microbes, fish, and animals, but the mechanism of its toxicity is unknown. We describe the isolation of two yeast genes (ALR1 and ALR2) which confer increased tolerance to Al3+ and Ga3+ ions when overexpressed while increasing strain sensitivity to Zn2+, Mn2+, Ni2+, Cu2+, Ca2+, and La3+ ions. The Alr proteins are homologous to the Salmonella typhimurium CorA protein, a bacterial Mg2+ and Co2+ transport system located in the periplasmic membrane. Yeast strains lacking ALR gene activity required additional Mg2+ for growth, and expression of either ALR1 or ALR2 corrected the Mg(2+)-requiring phenotype. The results suggest that the ALR genes encode the yeast uptake system for Mg2+ and other divalent cations. This hypothesis was supported by evidence that 57Co2+ accumulation was elevated in ALR-overexpressing strains and reduced in strains lacking ALR expression. ALR overexpression also overcame the inhibition of Co2+ uptake by Al3+ ions. The results indicate that aluminum toxicity to yeast occurs as a consequence of reduced Mg2+ influx via the Alr proteins. The molecular identification of the yeast Mg2+ transport system should lead to a better understanding of the regulation of Mg2+ homeostasis in eukaryote cells.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Drug Resistance, Biological Transport, Active, Cobalt, Saccharomyces cerevisiae, Magnesium, Amino Acid Sequence, Cloning, Molecular, Carrier Proteins, Cation Transport Proteins, Aluminum, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    183
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
183
Top 10%
Top 1%
Top 10%
gold