Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Microbiolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Methylation of proteins involved in translation

Authors: Bogdan, Polevoda; Fred, Sherman;

Methylation of proteins involved in translation

Abstract

SummaryMethylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S‐adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra‐ or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.

Related Organizations
Keywords

Ribosomal Proteins, Protein Biosynthesis, Proteins, Methyltransferases, Methylation, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 1%