Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Fu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Article . 1985 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Distribution of MR-induced sex-linked recessove lethal mutations in Drosophila melanogaster

Authors: J C, Eeken; F H, Sobels; V, Hyland; A P, Schalet;

Distribution of MR-induced sex-linked recessove lethal mutations in Drosophila melanogaster

Abstract

In the 'doubling-dose' method currently used in genetic risk evaluation, two principle assumptions are made and these are: (1) there is proportionality between spontaneous and induced mutations and (2) the lesions that lead to spontaneous and induced mutations are essentially similar. The studies reported in this paper were directed at examining the validity of these two assumptions in Drosophila. An analysis was made of the distribution of sex-linked recessive lethals induced by MR, one of the well-studied mutator systems in Drosophila. Appropriate genetic complementation tests with 15 defined X-chromosome duplications showed that MR-induced lethals occurred at many sites along the X-chromosome (in contrast to the known locus specificity of MR-induced visible-mutations); some, but not all these sites at which recessive lethals arose in the MR-system are the same as those known to be hot-spots for X-ray-induced lethals. With in situ hybridization we were able to demonstrate that a majority of MR-induced lethals is associated with a particular mobile DNA sequence, the P-element, i.e. they arose as a result of transposition. The differences between the profiles of MR-induced and X-ray-induced recessive lethals, and the nature of MR-induced and X-ray-induced mutations, thus raise questions about the validity of the assumptions involved in the use of the 'doubling-dose' method.

Related Organizations
Keywords

X Chromosome, DNA Repair, Genetic Linkage, X-Rays, Chromosome Mapping, Genes, Recessive, Drosophila melanogaster, Mutation, Animals, Female, Genes, Lethal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Average
Top 10%
Top 10%