Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Death and Disea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Death and Disease
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY
Data sources: PubMed Central
versions View all 3 versions

CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4

Authors: Wang, L; Zhou, H; Wang, Y; Cui, G; Di, L-j;

CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4

Abstract

AbstractCancer cells rely on glycolysis to maintain high levels of anabolism. However, the metabolism of glucose via glycolysis in cancer cells is frequently incomplete and results in the accumulation of acidic metabolites such as pyruvate and lactate. Thus, the cells have to develop strategies to alleviate the intracellular acidification and maintain the pH stability. We report here that glutamine consumption by cancer cells has an important role in releasing the acidification pressure associated with cancer cell growth. We found that the ammonia produced during glutaminolysis, a dominant glutamine metabolism pathway, is critical to resist the cytoplasmic acidification brought by the incomplete glycolysis. In addition, C-terminal-binding protein (CtBP) was found to have an essential role in promoting glutaminolysis by directly repressing the expression of SIRT4, a repressor of glutaminolysis by enzymatically modifying glutamate dehydrogenase in mitochondria, in cancer cells. The loss of CtBP in cancer cells resulted in the increased apoptosis due to intracellular acidification and the ablation of cancer cell metabolic homeostasis represented by decreased glutamine consumption, oxidative phosphorylation and ATP synthesis. Importantly, the immunohistochemistry staining showed that there was excessive expression of CtBP in tumor samples from breast cancer patients compared with surrounding non-tumor tissues, whereas SIRT4 expression in tumor tissues was abolished compared with the non-tumor tissues, suggesting CtBP-repressed SIRT4 expression contributes to the tumor growth. Therefore, our data suggest that the synergistically metabolism of glucose and glutamine in cancer cells contributes to both pH homeostasis and cell growth. At last, application of CtBP inhibitor induced the acidification and apoptosis of breast cancer cells and inhibited glutaminolysis in engrafted tumors, suggesting that CtBP can be potential therapeutic target of cancer treatment.

Keywords

Glutamine, Cell Respiration, Mice, Nude, Apoptosis, Hydrogen-Ion Concentration, Models, Biological, Xenograft Model Antitumor Assays, DNA-Binding Proteins, Mitochondrial Proteins, Alcohol Oxidoreductases, Mice, Methionine, Cell Line, Tumor, Neoplasms, Animals, Homeostasis, Humans, Sirtuins, Original Article, Glycolysis, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green
gold