Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2008 . Peer-reviewed
Data sources: Crossref
Development
Article . 2008
versions View all 2 versions

Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex

Authors: Alex C, Kim; Anne L, Reuter; Mohamad, Zubair; Tobias, Else; Kerri, Serecky; Nathan C, Bingham; Gareth G, Lavery; +2 Authors

Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex

Abstract

The nuclear receptor steroidogenic factor 1 (Sf1, Nr5a1) is essential for adrenal development and regulates genes that specify differentiated adrenocortical function. The transcriptional coactivator β-catenin reportedly synergizes with Sf1 to regulate a subset of these target genes;moreover, Wnt family members, signaling via β-catenin, are also implicated in adrenocortical development. To investigate the role ofβ-catenin in the adrenal cortex, we used two Sf1/Cre transgenes to inactivate conditional β-catenin alleles. Inactivation of β-catenin mediated by Sf1/Crehigh, a transgene expressed at high levels, caused adrenal aplasia in newborn mice. Analysis of fetal adrenal development with Sf1/Crehigh-mediated β-catenin inactivation showed decreased proliferation in presumptive adrenocortical precursor cells. By contrast, the Sf1/Crelow transgene effected a lesser degree of β-catenin inactivation that did not affect all adrenocortical cells, permitting adrenal survival to reveal age-dependent degeneration of the cortex. These results define crucial roles for β-catenin - presumably as part of the Wnt canonical signaling pathway - in both embryonic development of the adrenal cortex and in maintenance of the adult organ.

Keywords

Mice, Knockout, Integrases, Gene Expression Regulation, Developmental, Cell Differentiation, Steroidogenic Factor 1, Wnt Proteins, Mice, Adrenal Cortex, Animals, Biomarkers, beta Catenin, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 1%
Top 10%
Top 10%
bronze