Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The American Journal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Journal of Human Genetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The American Journal of Human Genetics
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The American Journal of Human Genetics
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Inheritance of Mitochondrial DNA Recombinants in Double-Heteroplasmic Families: Potential Implications for Phylogenetic Analysis

Authors: Zsurka, Gábor; Hampel, Kevin G.; Kudina, Tatiana; Kornblum, Cornelia; Kraytsberg, Yevgenia; Elger, Christian E.; Khrapko, Konstantin; +1 Authors

Inheritance of Mitochondrial DNA Recombinants in Double-Heteroplasmic Families: Potential Implications for Phylogenetic Analysis

Abstract

Recently, somatic recombination of human mitochondrial DNA (mtDNA) was discovered in skeletal muscle. To determine whether recombinant mtDNA molecules can be transmitted through the germ line, we investigated two families, each harboring two inherited heteroplasmic mtDNA mutations. Using allele-specific polymerase chain reaction and single-cell and single-molecule mutational analyses, we discovered, in both families, all four possible allelic combinations of the two heteroplasmic mutations (tetraplasmy), the hallmark of mtDNA recombination. We strongly suggest that these recombinant mtDNA molecules were inherited rather than de novo generated somatically, because they (1) are highly abundant and (2) are present in different tissues of maternally related family members, including young individuals. Moreover, the comparison of the complete mtDNA sequence of one of the families with database sequences revealed an irregular, nontreelike pattern of mutations, reminiscent of a reticulation. We therefore propose that certain reticulations of the human mtDNA phylogenetic tree might be explained by recombination of coexisting mtDNA molecules harboring multiple mutations.

Related Organizations
Keywords

Adult, Male, Adolescent, Molecular Sequence Data, DNA, Recombinant, Extrachromosomal Inheritance, DNA, Mitochondrial, MERRF Syndrome, Pedigree, Mutation, Genetics, MELAS Syndrome, Humans, Genetics(clinical), Female, Child, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
hybrid