Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Midline radial glia translocation and corpus callosum formation require FGF signaling

Authors: Karen Müller, Smith; Yasushi, Ohkubo; Maria Elisabetta, Maragnoli; Mladen-Roko, Rasin; Michael L, Schwartz; Nenad, Sestan; Flora M, Vaccarino;

Midline radial glia translocation and corpus callosum formation require FGF signaling

Abstract

Midline astroglia in the cerebral cortex develop earlier than other astrocytes through mechanisms that are still unknown. We show that radial glia in dorsomedial cortex retract their apical endfeet at midneurogenesis and translocate to the overlaying pia, forming the indusium griseum. These cells require the fibroblast growth factor receptor 1 (Fgfr1) gene for their precocious somal translocation to the dorsal midline, as demonstrated by inactivating the Fgfr1 gene in radial glial cells and by RNAi knockdown of Fgfr1 in vivo. Dysfunctional astroglial migration underlies the callosal dysgenesis in conditional Fgfr1 knockout mice, suggesting that precise targeting of astroglia to the cortex has unexpected roles in axon guidance. FGF signaling is sufficient to induce somal translocation of radial glial cells throughout the cortex; furthermore, the targeting of astroglia to dorsolateral cortex requires FGFr2 signaling after neurogenesis. Hence, FGFs have an important role in the transition from radial glia to astrocytes by stimulating somal translocation of radial glial cells.

Related Organizations
Keywords

Cerebral Cortex, Male, Mice, Knockout, Fibroblast Growth Factor 8, Growth Cones, Down-Regulation, Mice, Transgenic, Corpus Callosum, Fibroblast Growth Factors, Mice, Cell Movement, Astrocytes, Animals, Female, RNA Interference, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Cell Shape, Neuroglia, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 1%