Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Dipeptidyl-peptidase I does not functionally compensate for the loss of tripeptidyl-peptidase I in the neurodegenerative disease late-infantile neuronal ceroid lipofuscinosis

Authors: Kwi-Hye, Kim; Christine T, Pham; David E, Sleat; Peter, Lobel;

Dipeptidyl-peptidase I does not functionally compensate for the loss of tripeptidyl-peptidase I in the neurodegenerative disease late-infantile neuronal ceroid lipofuscinosis

Abstract

LINCL (late-infantile neuronal ceroid lipofuscinosis) is a fatal neurodegenerative disease resulting from mutations in the gene encoding the lysosomal protease TPPI (tripeptidyl-peptidase I). TPPI is expressed ubiquitously throughout the body but disease appears restricted to the brain. One explanation for the absence of peripheral pathology is that in tissues other than brain, other proteases may compensate for the loss of TPPI. One such candidate is another lysosomal aminopeptidase, DPPI (dipeptidyl-peptidase I), which appears to have overlapping substrate specificity with TPPI and is expressed at relatively low levels in brain. Compensation for the loss of TPPI by DPPI may have therapeutic implications for LINCL and, in the present study, we have investigated this possibility using mouse genetic models. Our rationale was that if DPPI could compensate for the loss of TPPI in peripheral tissues, then its absence should exacerbate disease in an LINCL mouse model but, conversely, increased CNS (central nervous system) expression of DPPI should ameliorate disease. By comparing TPPI and DPPI single mutants with a double mutant lacking both proteases, we found that the loss of DPPI had no effect on accumulation of storage material, disease severity or lifespan of the LINCL mouse. Transgenic expression of DPPI resulted in a ∼2-fold increase in DPPI activity in the brain, but this had no significant effect on survival of the LINCL mouse. These results together indicate that DPPI cannot functionally compensate for the loss of TPPI. Therapeutic approaches to increase neuronal expression of DPPI are therefore unlikely to be effective for treatment of LINCL.

Keywords

Tripeptidyl-Peptidase 1, Brain, Mice, Transgenic, Aminopeptidases, Immunohistochemistry, Cathepsin C, Mice, Neuronal Ceroid-Lipofuscinoses, Endopeptidases, Animals, Serine Proteases, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases, Lysosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze