Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The Multifunctional Nuclear Protein p54nrb is Multiphosphorylated in Mitosis and Interacts with the Mitotic Regulator Pin1

Authors: Ariane Proteau; Sébastien Lavoie; Stéphanie Blier; Michel Vincent; Alexandra Albert; Abdulmaged M. Traish;

The Multifunctional Nuclear Protein p54nrb is Multiphosphorylated in Mitosis and Interacts with the Mitotic Regulator Pin1

Abstract

The human protein p54nrb and its mouse homolog NonO have been implicated in a variety of nuclear processes including transcription, pre-mRNA processing, nuclear retention of edited RNA and DNA relaxation. We have identified p54nrb as an antigen of the phosphodependent monoclonal antibodies CC-3 and MPM-2 and shown that this protein is phosphorylated on multiple sites during mitosis. The use of the cyclin-dependent protein kinase inhibitor roscovitine and immunodepletion studies with an anti-cyclin B1 antibody established that Cdk1 was responsible for the phosphorylation of the carboxy-terminal extremity of p54nrb whereas a different kinase appeared to be involved in the generation of CC-3 epitope(s) in the amino-terminal moiety of the protein. Like many CC-3 and MPM-2 antigens, we show that p54nrb is a target of the peptidylprolyl isomerase Pin1, suggesting that it may be regulated by phosphorylation-dependent conformational changes as many other nuclear proteins upon entry into mitosis. In addition, site-directed mutagenesis indicated that the interaction of Pin1 with p54nrb was mediated by three threonine residues located in the proline-rich carboxy-terminal extremity of the protein. Our results also showed that Pin1 binding was favored when at least two of the three threonine residues were phosphorylated, suggesting a regulation mechanism based on multisite phosphorylation.

Related Organizations
Keywords

Mitosis, Nuclear Proteins, RNA-Binding Proteins, Peptidylprolyl Isomerase, Protein Serine-Threonine Kinases, Substrate Specificity, NIMA-Interacting Peptidylprolyl Isomerase, Epitopes, Mice, Nuclear Matrix-Associated Proteins, CDC2 Protein Kinase, Animals, Humans, Phosphorylation, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%