Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.nature.com/article...
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
versions View all 3 versions

Human electronegative low-density lipoprotein modulates cardiac repolarization via LOX-1-mediated alteration of sarcolemmal ion channels

Authors: Lee, An-Sheng; Xi, Yutao; Lai, Chin-Hu; Chen, Wei-Yu; Peng, Hsien-Yu; Chan, Hua-Chen; Chen, Chu-Huang; +1 Authors

Human electronegative low-density lipoprotein modulates cardiac repolarization via LOX-1-mediated alteration of sarcolemmal ion channels

Abstract

AbstractDyslipidemia is associated with greater risk of ventricular tachyarrhythmias in patients with cardiovascular diseases. We aimed to examine whether the most electronegative subfraction of low-density lipoprotein (LDL), L5, is correlated with QTc prolongation in patients with coronary artery disease (CAD) and investigate the effects of human L5 on the electrophysiological properties of cardiomyocytes in relation to the lectin-like oxidized LDL receptor (LOX-1). L5 was isolated from the plasma of 40 patients with angiography documented CAD and 13 patients with no CAD to correlate the QTc interval respectively. The mean concentration of L5 was higher and correlated with QTc in patients with CAD compared to controls. To examine the direct effect of L5 on QTc, mice were intravenously injected with L5 or L1. L5-injected wild-type but not LOX-1−/− mice showed longer QTc compared to L1-injected animals in vivo with corresponding longer action potential duration (APD) in cardiomyocytes incubated with L5 in vitro. The APD prolongation was mediated by an increase of L-type calcium current and a decrease of transient outward potassium current. We show that L5 was positively correlated with QTc prolongation in patients with ischemic heart disease. L5 can modulate cardiac repolarization via LOX-1-mediated alteration sarcolemmal ionic currents.

Keywords

Myocardium, Action Potentials, Coronary Artery Disease, Scavenger Receptors, Class E, Article, Ion Channels, Lipoproteins, LDL, Mice, Sarcolemma, Animals, Humans, Myocytes, Cardiac, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
gold