Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains

Authors: Stephen T. Smale; Roger Ferrini; Tapani Ronni; Dana Russell; Bradley S. Cobb; Sinisa Dovat;

A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains

Abstract

Many nuclear proteins are inactivated during mitotic entry, presumably as a prerequisite to chromatin condensation and cell division. C2H2 zinc fingers define the largest transcription factor family in the human proteome. The linker separating finger motifs is highly conserved and resembles TGEKP in more than 5000 occurrences. However, the reason for this conservation is not fully understood. We demonstrate that all three linkers in the DNA-binding domain of Ikaros are phosphorylated during mitosis. Phosphomimetic substitutions abolished DNA-binding and pericentromeric localization. A linker within Sp1 was also phosphorylated, suggesting that linker phosphorylation provides a global mechanism for inactivation of the C2H2 family.

Keywords

Cell Cycle, Molecular Sequence Data, Mitosis, Zinc Fingers, Protein Structure, Tertiary, DNA-Binding Proteins, Ikaros Transcription Factor, Mice, Mutation, Animals, Amino Acid Sequence, Phosphorylation, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 10%
Top 10%
Top 10%
Published in a Diamond OA journal