Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellular Signallingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14

Authors: Cynthia Corley Mastick; Amy R. Sanguinetti;

c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14

Abstract

Caveolin-1 is phosphorylated at tyrosine 14 in response to cellular stress. Tyrosine 14 is a consensus Abl phosphorylation site suggesting that caveolin-1 may be an Abl substrate. We report here that expression of c-Abl is required for oxidative stress-induced caveolin-1 phosphorylation. In contrast, c-Src expression is not required. Phosphocaveolin is one of only two phosphotyrosine signals missing in lysates from the Abl(-/-) cells, indicating that these cells still respond to oxidative stress. Oxidative stress-induced tyrosine phosphorylation of caveolin-1 occurs only at the Abl site, tyrosine 14. Caveolin-1 is also a major phosphotyrosine signal detected in cells over-expressing c-Abl. Our results show that Abl activation leads to phosphorylation of caveolin-1 on tyrosine 14. Both Abl and caveolin have been linked to the actin cytoskeleton, and oxidative stress-induced phosphocaveolin is enriched at focal contacts. This suggests that phosphocaveolin regulates these structures, perhaps through recruiting and activating SH2-domain proteins such as Csk.

Related Organizations
Keywords

Mice, Knockout, Focal Adhesions, Caveolin 1, Fibroblasts, Caveolae, Phosphoproteins, Caveolins, Gene Expression Regulation, Enzymologic, src Homology Domains, Mice, Oxidative Stress, Animals, Humans, Tyrosine, Phosphorylation, Proto-Oncogene Proteins c-abl, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%