Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Bioenergetics
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Targeted disruption of the gene encoding the proteolipid subunit of mouse vacuolar H+-ATPase leads to early embryonic lethality

Authors: Inoue, Hiroki; Noumi, Takato; Nagata, Mitsuo; Murakami, Hiroshi; Kanazawa, Hiroshi;

Targeted disruption of the gene encoding the proteolipid subunit of mouse vacuolar H+-ATPase leads to early embryonic lethality

Abstract

Vacuolar H(+)-ATPase (V-ATPase) is responsible for acidification of intracellular compartments in eukaryotic cells. Its 16-kDa subunit (proteolipid, PL16) plays a central role in V-ATPase function, forming the principal channel via which protons are translocated. To elucidate physiological roles of V-ATPase in mammalian cell function and embryogenesis, we attempted to generate a PL16 null mutant mouse by gene-targeting. Mice heterozygous (PL16(+/-)) for the proteolipid mutation were intercrossed and their offspring were classified according to genotype. There were no homozygous (PL16(-/-)) pups among 69 neonates examined, but a few PL16(-/-) embryos were found during the pre-implantation stages of embryonic development, up to day 3.5 post-coitum. These results suggested that PL16 (and hence V-ATPase) may play an essential role in cell proliferation and viability during early embryogenesis. PL16(+/-) mice were indistinguishable from their wild-type littermates and displayed no discernible abnormalities, although the PL16 mRNA level in PL16(+/-) mice decreased to about one-half of wild-type levels.

Related Organizations
Keywords

Mice, Knockout, Heterozygote, Vacuolar Proton-Translocating ATPases, Genotype, Cell Survival, Proteolipids, Biophysics, Cell Biology, Biochemistry, Cell Line, Mice, Inbred C57BL, Mice, Proton-Translocating ATPases, Mutation, Embryo Loss, Animals, RNA, Messenger, Cell Division, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
hybrid