Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Last intron of the chemokine-like factor gene contains a putative promoter for the downstream CKLF super family member 1 gene

Authors: Yinmei Zhang; Dalong Ma; Mingping Qian; Peiguo Ding; Ying Wang; Wenling Han; Xiaotu Ma; +4 Authors

Last intron of the chemokine-like factor gene contains a putative promoter for the downstream CKLF super family member 1 gene

Abstract

The genes for chemokine-like factor (CKLF) and four chemokine-like factor super family members (CKLFSF1-4) are tightly linked on chromosome 16, with only 325 bp separating CKLF and CKLFSF1. We used Northern blotting and RT-PCR to show that these two genes are expressed independently of one another. We then used a novel computational promoter prediction method based on the interaction among transcription factor binding sites (TFBSs) to identify a putative promoter region for the CKLFSF1 gene. Our method predicted a promoter region in the last intron of the upstream gene, CKLF. We PCR amplified the predicted promoter region and used a luciferase assay to show that the region was able to drive the luciferase gene. DNA decoy experiments indicated that 214 bp fragment neighboring the TATA box markedly inhibited CKLFSF1 gene expression. Sequence analysis of the region revealed a typical TATA box (TATATAA) and multiple potential transcription factor binding sites, providing further evidence for this being a functional promoter for CKLFSF1. This work provides the first evidence of a promoter from one gene located in an intron of another.

Related Organizations
Keywords

MARVEL Domain-Containing Proteins, Base Sequence, Molecular Sequence Data, Regulatory Sequences, Nucleic Acid, Blotting, Northern, Transfection, TATA Box, Introns, Cell Line, Gene Expression Regulation, Genes, Genes, Reporter, Humans, RNA, Messenger, Chemokines, Luciferases, Promoter Regions, Genetic, HT29 Cells, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average