Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1995 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1995
versions View all 2 versions

Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia.

Authors: J, Callis; T, Carpenter; C W, Sun; R D, Vierstra;

Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia.

Abstract

Abstract The Arabidopsis thaliana ecotype Columbia ubiquitin gene family consists of 14 members that can be divided into three types of ubiquitin genes; polyubiquitin genes, ubiquitin-like genes and ubiquitin extension genes. The isolation and characterization of eight ubiquitin sequences, consisting of four polyubiquitin genes and four ubiquitin-like genes, are described here, and their relationships to each other and to previously identified Arabidopsis ubiquitin genes were analyzed. The polyubiquitin genes, UBQ3, UBQ10, UBQ11 and UBQ14, contain tandem repeats of the 228-bp ubiquitin coding region. Together with a previously described polyubiquitin gene, UBQ4, they differ in synonymous substitutions, number of ubiquitin coding regions, number and nature of nonubiquitin C-terminal amino acid(s) and chromosomal location, dividing into two subtypes; the UBQ3/UBQ4 and UBQ10/UBQ11/UBQ14 subtypes. Ubiquitin-like genes, UBQ7, UBQ8, UBQ9 and UBQ12, also contain tandem repeats of the ubiquitin coding region, but at least one repeat per gene encodes a protein with amino acid substitutions. Nucleotide comparisons, Ks value determinations and neighbor-joining analyses were employed to determine intra- and intergenic relationships. In general, the rate of synonymous substitution is too high to discern related repeats. Specific exceptions provide insight into gene relationships. The observed nucleotide relationships are consistent with previously described models involving gene duplications followed by both unequal crossing-over and gene conversion events.

Related Organizations
Keywords

Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Chromosome Mapping, Genetic Variation, Sequence Analysis, DNA, Genes, Plant, Biological Evolution, Biopolymers, Sequence Homology, Nucleic Acid, Amino Acid Sequence, Cloning, Molecular, Polyubiquitin, Ubiquitins, Pseudogenes, Repetitive Sequences, Nucleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 10%
Top 1%
Top 10%
hybrid