Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Liver Internationalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Liver International
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Retinoic acid signalling induces the differentiation of mouse fetal liver‐derived hepatic progenitor cells

Authors: Jiayi, Huang; Yang, Bi; Gao-Hui, Zhu; Yun, He; Yuxi, Su; Bai-Cheng, He; Yi, Wang; +13 Authors

Retinoic acid signalling induces the differentiation of mouse fetal liver‐derived hepatic progenitor cells

Abstract

AbstractBackground: Hepatic progenitor cells (HPCs) can be isolated from fetal liver and extrahepatic tissues. Retinoic acid (RA) signalling plays an important role in development, although the role of RA signalling in liver‐specific progenitors is poorly understood.Aims: We sought to determine the role of RA in regulating hepatic differentiation.Methods: RNA was isolated from liver tissues of various developmental stages. Liver marker expression was assessed by reverse transcriptase‐polymerase chain reaction and immunofluorescence staining. Reversibly immortalized HPCs derived from mouse embryonic day 14.5 (E14.5) liver (aka, HP14.5) were established. Albumin promoter‐driven reporter (Alb‐GLuc) was used to monitor hepatic differentiation. Glycogen synthesis was assayed as a marker for terminal hepatic differentiation.Results: Retinoic acid receptor (RAR)‐α, retinoid X receptor (RXR)‐α and RXR‐γ expressed in E12.5 to postnatal day 28 liver samples. Expression of RAR‐β and RXR‐β was low perinatally, whereas RAR‐γ was undetectable in prenatal tissues and increased postnatally. Retinal dehydrogenase 1 and 2 (Raldh1 and Raldh2) were expressed in all tissues, while Raldh3 was weakly expressed in prenatal samples but was readily detected postnatally. Nuclear receptor corepressors were highly expressed in all tissues, while expression of nuclear co‐activators decreased in perinatal tissues and increased after birth. HP14.5 cells expressed high levels of early liver stem cell markers. Expression of RA signalling components and coregulators was readily detected in HP14.5. RA was shown to induce Alb‐GLuc activity and late hepatocyte markers. RA was further shown to induce glycogen synthesis in HP14.5 cells, an important function of mature hepatocytes.Conclusions: Our results strongly suggest that RA signalling may play an important role in regulating hepatic differentiation.

Related Organizations
Keywords

Receptors, Retinoic Acid, Stem Cells, Cell Differentiation, Tretinoin, Cell Line, Mice, Nuclear Receptor Coactivator 1, Retinoid X Receptors, Liver, Animals, Nuclear Receptor Co-Repressor 1, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%