Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the ophthalmic trigeminal placode

Authors: C.-Y. Kelly Kuan; James R. Bradshaw; Clare V. H. Baker; Michael R. Stark; Carolynn M. Dude; Nicholas D. E. Greene; Frédéric Relaix;

Activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the ophthalmic trigeminal placode

Abstract

Vertebrate cranial neurogenic placodes are relatively simple model systems for investigating the control of sensory neurogenesis. The ophthalmic trigeminal (opV) placode, for which the earliest specific marker is the paired domain homeodomain transcription factor Pax3, forms cutaneous sensory neurons in the ophthalmic lobe of the trigeminal ganglion. We previously showed that Pax3 expression in avian opV placode cells correlates with specification and commitment to a Pax3+, cutaneous sensory neuron fate. Pax3 can act as a transcriptional activator or repressor, depending on the cellular context. We show using mouse Splotch(2H) mutants that Pax3 is necessary for the normal neuronal differentiation of opV placode cells. Using an electroporation construct encoding a Pax3-Engrailed fusion protein, which represses Pax3 target genes, we show that activation of Pax3 target genes is required cell-autonomously within chick opV placode cells for expression of the opV placode markers FGFR4 and Ngn2, maintenance of the preplacodal marker Eya2, expression of Pax3 itself (suggesting that Pax3 autoregulates), neuronal differentiation and delamination. Mis-expression of Pax3 in head ectoderm is sufficient to induce FGFR4 and Ngn2 expression, but neurons do not differentiate, suggesting that additional signals are necessary to enable Pax3+ cells to differentiate as neurons. Mis-expression of Pax3 in the Pax2+ otic and epibranchial placodes also downregulates Pax2 and disrupts otic vesicle closure, suggesting that Pax3 is sufficient to alter the identity of these cells. Overall, our results suggest that activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the opV placode.

Related Organizations
Keywords

Neurogenic placodes, Neurogenesis, Recombinant Fusion Proteins, Nerve Tissue Proteins, Chick Embryo, Splotch, Ophthalmic, Ngn2, Mice, Epibranchial, Basic Helix-Loop-Helix Transcription Factors, Animals, Paired Box Transcription Factors, Receptor, Fibroblast Growth Factor, Type 4, Molecular Biology, PAX3 Transcription Factor, In Situ Hybridization, Otic, Homeodomain Proteins, Pax3, Pax2, Sp2H, Gene Expression Regulation, Developmental, Cell Differentiation, Cell Biology, Trigeminal, Embryo, Mammalian, Electroporation, Trigeminal Ganglion, FGFR4, Sensory neurogenesis, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Average
Top 10%
hybrid