Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2008
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2008 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Lineage-specific responses to reduced embryonic Pax3 expression levels

Authors: Rhonda Rogers; Simon J. Conway; Jian Wang; Hong-Ming Zhou;

Lineage-specific responses to reduced embryonic Pax3 expression levels

Abstract

Pax3 is an essential paired- and homeodomain-containing transcription factor that is necessary for closure of the neural tube, and morphogenesis of the migratory neural crest and myoblast lineages. Homozygous loss-of-function mutation results in mid-gestational lethality with defects in myogenesis, neural tube closure and neural crest-derived lineages including melanocytes, Schwann cells and insufficient mesenchymal cells to septate the cardiac outflow tract. To address the function of Pax3 in later fetal stages and in specific adult tissues, we generated a floxed Pax3 allele (Pax3(flox)). An intermediate allele (Pax3(neo)) was produced via creation of the floxed allele, in which the TK-neo(R) cassette is present between exons 5 and 6. It was deduced to be a hypomorph, as Pax3 protein expression is reduced by 80% and homozygote hypomorphs die postnatally. To assess the consequences of reduced Pax3 levels on the various Pax3-expressing lineages and to determine the underlying cause of lethality, we examined Pax3 spatiotemporal expression and the resultant defects. Defective limb and tongue musculature were observed and lethality was due to an inability to suckle. However, the heart, diaphragm, trunk musculature, as well as the various neural crest-derived lineages and neural tube were all unaffected by reduced Pax3 levels. Significantly, elevated levels of the related Pax7 protein were present in unaffected neural tube and epaxial somatic component. The limb and tongue myogenic defects were found to be due to a significant increase in apoptosis within the somites that leads to a paucity of migratory hypaxial myoblasts. These effects were attributed to the hypomorphic effect of the Pax3(neo) allele, as removal of the TK-neo(R) cassette completely relieves the hypomorphic effect, as 100% of the Pax3(flox/flox) mice were normal. These data demonstrate a lineage-specific response to approximately 80% loss of Pax3 protein expression, with myogenesis of limb and tongue being most sensitive to reduced Pax3 levels. Thus, we have established that there are different minimum threshold requirements for Pax3 within different Pax3-expressing lineages.

Related Organizations
Keywords

Myoblasts, Skeletal, Embryonic Development, Apoptosis, Mouse embryo, Congenital Abnormalities, Mice, Pregnancy, Hypomorph/gene dosage, Animals, Paired Box Transcription Factors, Molecular Biology, PAX3 Transcription Factor, Alleles, In Situ Hybridization, DNA Primers, Mice, Knockout, Pax3, Base Sequence, Tongue and limb hypaxial muscle, Gene Expression Regulation, Developmental, Cell Biology, Pax7, Mice, Mutant Strains, Mice, Inbred C57BL, Somites, Animals, Newborn, Organ Specificity, Female, Genes, Lethal, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
hybrid