Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2002
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Pasteur
Article . 2002
Data sources: HAL-Pasteur
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2002
Data sources: HAL Descartes
The Journal of Immunology
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Homeostasis of Peripheral CD4+ T Cells: IL-2Rα and IL-2 Shape a Population of Regulatory Cells That Controls CD4+ T Cell Numbers

Authors: Almeida, Afonso R M; Legrand, Nicolas; Papiernik, Martine; Freitas, António A;

Homeostasis of Peripheral CD4+ T Cells: IL-2Rα and IL-2 Shape a Population of Regulatory Cells That Controls CD4+ T Cell Numbers

Abstract

Abstract We show that the lymphoid hyperplasia observed in IL-2Rα- and IL-2-deficient mice is due to the lack of a population of regulatory cells essential for CD4 T cell homeostasis. In chimeras reconstituted with bone marrow cells from IL-2Rα-deficient donors, restitution of a population of CD25+CD4+ T cells prevents the chaotic accumulation of lymphoid cells, and rescues the mice from autoimmune disease and death. The reintroduction of IL-2-producing cells in IL-2-deficient chimeras establishes a population of CD25+CD4+ T cells, and restores the peripheral lymphoid compartments to normal. The CD25+CD4+ T cells regulated selectively the number of naive CD4+ T cells transferred into T cell-deficient hosts. The CD25+CD4+/naive CD4 T cell ratio and the sequence of cell transfer determines the homeostatic plateau of CD4+ T cells. Overall, our findings demonstrate that IL-2Rα is an absolute requirement for the development of the regulatory CD25+CD4+ T cells that control peripheral CD4 T cell homeostasis, while IL-2 is required for establishing a sizeable population of these cells in the peripheral pools.

Keywords

CD4-Positive T-Lymphocytes, Mice, Knockout, [SDV.IMM] Life Sciences [q-bio]/Immunology, Receptors, Interleukin-2, Survival Analysis, Mice, Inbred C57BL, Mice, Adjuvants, Immunologic, T-Lymphocyte Subsets, Lymphopenia, Radiation Chimera, Animals, Homeostasis, Interleukin-2, Lymphocyte Count, Interphase, Bone Marrow Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    432
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
432
Top 1%
Top 1%
Top 1%
bronze