Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2011
versions View all 2 versions

An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity

Authors: Pil Joon, Seo; Jung-Min, Park; Seok Ki, Kang; Sang-Gyu, Kim; Chung-Mo, Park;

An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity

Abstract

The plasma membrane is an important cellular organ that perceives incoming developmental and environmental signals and integrates these signals into cellular regulatory mechanisms. It also acts as a barrier against unfavorable extracellular factors to maintain cell viability. Despite its importance for cell viability, molecular components determining cell viability and underlying mechanisms are largely unknown. Here, we show that a plasma membrane-localized MtN3 protein SAG29 regulates cell viability under high salinity in Arabidopsis. The SAG29 gene is expressed primarily in senescing plant tissues. It is induced by osmotic stresses via an abscisic acid-dependent pathway. Whereas the SAG29-overexpressing transgenic plants (35S:SAG29) exhibited an accelerated senescence and were hypersensitive to salt stress, the SAG29-deficient mutants were less sensitive to high salinity. Consistent with this, the 35S:SAG29 transgenic plants showed reduced cell viability in the roots under normal growth condition. In contrast, cell viability in the SAG29-deficient mutant roots was indistinguishable from that in the roots of control plants. Notably, the mutant roots exhibited enhanced cell viability under high salinity. Our observations indicate that the senescence-associated SAG29 protein is associated with cell viability under high salinity and other osmotic stress conditions. We propose that the SAG29 protein may serve as a molecular link that integrates environmental stress responses into senescing process.

Keywords

Salinity, Arabidopsis Proteins, Cell Survival, Cell Membrane, Arabidopsis, Membrane Proteins, Flowers, Sodium Chloride, Plants, Genetically Modified, Plant Roots, Plant Leaves, Protein Transport, Gene Expression Regulation, Plant, Seedlings, Stress, Physiological, Abscisic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    181
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
181
Top 1%
Top 10%
Top 10%